Skip to main content
  • Created:
  • Updated:
  • Author:
    Takeshi Takatsudo

How Buck Converters Work: Feedback Control Explained

Understanding how the LM2596S-ADJ controls output voltage through feedback - it's like an op-amp, but with switching!

The Question

When looking at the LM2596S-ADJ circuit, a natural question arises:

"This is a DC-DC converter, right? We input 15V, but how does it output 13.5V? Does it continuously monitor the FB (feedback) pin and control the voltage? Is this similar to an op-amp?"

Short answer: Yes! It's exactly like an op-amp comparator, but instead of adjusting output voltage continuously, it adjusts the duty cycle of an internal switch.

What is a Buck Converter?

A buck converter (step-down converter) is a DC-DC switching regulator that converts a higher input voltage to a lower output voltage with high efficiency.

Buck Converter vs Linear Regulator

Linear Regulator (like LM7812):

15V ──┬──[Transistor]──┬──→ 12V
│ (Variable │
│ Resistance) │
Heat! Load

Power loss = (15V - 12V) × Current
= 3V × 1A = 3W of heat! 🔥
Efficiency ≈ 80%

Buck Converter (like LM2596S-ADJ):

15V ──┬──[Switch ON/OFF]──[Inductor]──┬──→ 13.5V
│ 150kHz PWM │
│ │
GND Load

Power loss ≈ 10-15% = 0.2W of heat ❄️
Efficiency ≈ 85-90%

Key difference: Linear regulators waste excess voltage as heat. Buck converters use high-frequency switching to efficiently "chop" the voltage down.

The Feedback Control Loop (Like an Op-Amp!)

Internal Block Diagram

                LM2596S-ADJ Internal Circuit
┌──────────────────────────────────────┐
│ │
15V ────┤ VIN │
│ │ │
│ ├──→ [Power Switch] ──→ VOUT ──────┤──→ To Inductor
│ (MOSFET) 4 │
│ ↑ │
│ │ │
│ ┌────────┴─────────┐ │
│ │ PWM Control │ │
│ │ Logic │ │
│ └────────┬─────────┘ │
│ │ │
│ ┌────────┴─────────┐ │
│ │ Error │ │
│ │ Amplifier │ │
│ │ (like op-amp) │ │
│ └───┬──────────┬───┘ │
│ │ │ │
│ [1.23V] FB ───────────────────┤──→ To voltage divider
│ (Internal 2 │
│ Reference) │
└──────────────────────────────────────┘

The Comparison: Op-Amp Analogy

Your intuition is 100% correct! The LM2596S-ADJ uses an error amplifier that works just like an op-amp:

Op-Amp CircuitLM2596S-ADJ Buck Converter
Non-inverting input (+)Internal 1.23V reference
Inverting input (-)FB pin (pin 2)
Error amplifierCompares FB to 1.23V
Output adjustmentChanges PWM duty cycle
GoalMake inputs equal
V(+) = V(-)FB = 1.23V
Op-Amp Voltage Regulator:
┌──────┐
┌────┤+ │
│ │ Op- ├──── Vout (continuous voltage)
│ ┌──┤- Amp│
│ │ └──────┘
│ │ ↑
[Vref] [Feedback from voltage divider]

LM2596S-ADJ:
┌──────┐
[1.23V]─┤+ │
│ Error├──→ PWM ──→ Switch (150kHz)
┌────┤- Amp│
│ └──────┘
│ ↑
[Feedback from voltage divider via FB pin]

How Feedback Sets the Output Voltage

The Magic Formula

The LM2596S-ADJ has an internal 1.23V reference. The chip tries to keep the FB pin at exactly 1.23V.

Circuit:

                        R1 (10kΩ)
+13.5V output ──────┬────────────┬──── FB pin (pin 2)
│ │
│ R2 (1kΩ)
│ │
│ GND

[Voltage divider makes FB = 1.23V]

Voltage divider equation:

V_FB = V_OUT × (R2 / (R1 + R2))

The chip forces: V_FB = 1.23V

Therefore:
1.23V = V_OUT × (R2 / (R1 + R2))

Solving for V_OUT:
V_OUT = 1.23V × (R1 + R2) / R2
= 1.23V × (1 + R1/R2)

Example (our +13.5V circuit):

V_OUT = 1.23V × (1 + 10kΩ/1kΩ)
= 1.23V × (1 + 10)
= 1.23V × 11
= 13.53V ✓

Want Different Output Voltage?

Just change the resistor ratio!

Target VoltageR1R2Calculation
3.3V1.7kΩ1kΩ1.23V × (1 + 1.7) = 3.32V
5V3.1kΩ1kΩ1.23V × (1 + 3.1) = 5.04V
7.5V5.1kΩ1kΩ1.23V × (1 + 5.1) = 7.50V
12V8.7kΩ1kΩ1.23V × (1 + 8.7) = 11.94V
13.5V10kΩ1kΩ1.23V × 11 = 13.53V

The Control Process: How It Maintains Voltage

Let's see what happens when the output voltage changes:

Scenario 1: Output Voltage Drops (Load increases)

Step 1: Heavy load pulls voltage down
+13.5V → drops to 13.2V

Step 2: Voltage divider responds
FB pin = 13.2V × (1kΩ/11kΩ) = 1.20V
FB is now LESS than 1.23V reference!

Step 3: Error amplifier detects difference
Error = 1.23V - 1.20V = +0.03V (positive error)
"Need more output voltage!"

Step 4: PWM controller increases duty cycle
Was: 90% duty cycle
Now: 92% duty cycle
(Switch stays ON longer)

Step 5: More energy delivered to output
Inductor current increases
Output voltage rises back to 13.5V

Step 6: System stabilizes
FB pin returns to 1.23V
Error = 0
Duty cycle adjusts to maintain balance ✓

Scenario 2: Output Voltage Rises (Load decreases)

Step 1: Light load allows voltage to rise
+13.5V → rises to 13.8V

Step 2: Voltage divider responds
FB pin = 13.8V × (1kΩ/11kΩ) = 1.25V
FB is now MORE than 1.23V reference!

Step 3: Error amplifier detects difference
Error = 1.23V - 1.25V = -0.02V (negative error)
"Need less output voltage!"

Step 4: PWM controller decreases duty cycle
Was: 90% duty cycle
Now: 88% duty cycle
(Switch stays OFF longer)

Step 5: Less energy delivered to output
Inductor current decreases
Output voltage drops back to 13.5V

Step 6: System stabilizes
FB pin returns to 1.23V
Error = 0
Duty cycle adjusts to maintain balance ✓

How Switching Creates Lower Voltage: Duty Cycle

What is Duty Cycle?

Duty cycle is the percentage of time the internal switch is ON during each cycle.

One switching period (1/150kHz = 6.67µs):

Switch ON for 6µs, OFF for 0.67µs
Duty Cycle (D) = ON time / Total time
= 6µs / 6.67µs
= 90%

Output Voltage = Input Voltage × Duty Cycle
= 15V × 0.9
= 13.5V ✓

Visualizing the Switching

Time axis (microseconds) →
0 1 2 3 4 5 6 6.67

Switch state:
ON ████████████████████████████ OFF ██
(6µs = 90% duty cycle) (0.67µs)

Voltage at VOUT pin (before inductor smoothing):
15V ┐ ┌─────────────────────┐ ┌─
│ │ │ │
0V └──┘ └─────┘

After inductor smoothing:
15V ┐
│ ───────────────────────────────
13.5V (Average = 15V × 0.9 = 13.5V)

0V ┘

The inductor acts like a flywheel, smoothing the chopped voltage into steady DC!

The Complete Buck Converter Circuit

                    LM2596S-ADJ (U2)
┌─────────────────┐
+15V ───────────────┤5 VIN │
│ │
┌──────┤3 ON │
│ │ │
│ │ VOUT ├4───┬─→ L1 (100µH) ──┬─→ +13.5V
│ │ │ │ │
│ │ FB ├2───┼────────────────┤
│ │ │ │ │
│ │ GND ├1─┐ │ │
│ └─────────────────┘ │ │ │
│ GND│ │
┌───┴───┐ │ │
│ C5 │ 100µF │ │
│ Input │ │ │
└───┬───┘ │ │
GND │ │
│ │
D1 (SS34) │ │
Schottky ────┘ │
(Flyback) │
│ │
GND │

Feedback Divider: │
R1 (10kΩ) │
┌────────────┬───────────────────────┘
│ │
│ R2 (1kΩ)
│ │
│ GND

Sets: V_FB = V_OUT × (R2/(R1+R2))
= 13.5V × (1k/11k)
= 1.23V ✓

Component Roles

ComponentFunction
L1 (100µH)Stores energy when switch is ON, releases when OFF (smooths output)
D1 (Schottky)Provides current path when switch is OFF (flywheel effect)
C5 (input cap)Stabilizes input voltage, handles transient currents
C3 (output cap)Filters ripple, provides stable output voltage
R1, R2Voltage divider - sets output voltage by creating 1.23V at FB pin

Why Buck Converters Are Better Than Linear Regulators

Power Loss Comparison

Our circuit: 15V → 13.5V at 1.3A

Linear Regulator (LM7812 equivalent):

Power in  = 15V × 1.3A = 19.5W
Power out = 13.5V × 1.3A = 17.6W
Power loss = 19.5W - 17.6W = 1.9W 🔥

Efficiency = 17.6W / 19.5W = 90%
(Still wastes 1.9W as heat)

Heat sink required: Large (to dissipate 1.9W)

Buck Converter (LM2596S-ADJ):

Power in  = 15V × 1.3A = 19.5W
Power out = 13.5V × 1.3A = 17.6W

Internal loss ≈ 10% = 1.95W (efficiency loss)
Power loss ≈ 0.2W ❄️

Efficiency = 90% (typical for buck converters)

Heat sink required: Minimal or none

Result: Buck converter runs much cooler and wastes less energy!

Why We Use Both in This Project

Power Supply Architecture:

Stage 1: USB-PD (15V) → DC-DC Buck → 13.5V
(High efficiency, large voltage drop)

Stage 2: DC-DC (13.5V) → Linear Regulator → 12V
(Ultra-low noise, small voltage drop)

Best of both worlds:
✓ Efficient voltage reduction (buck converter)
✓ Ultra-clean output (linear regulator)
✓ Low overall heat generation
✓ Less than 1mVp-p ripple (perfect for audio circuits)

Key Takeaways

  1. Buck converters are switching regulators that use PWM to efficiently reduce voltage
  2. Feedback control works like an op-amp comparing FB pin to internal 1.23V reference
  3. Voltage divider sets output voltage by creating 1.23V at FB pin
  4. Duty cycle determines output: V_OUT = V_IN × Duty Cycle
  5. Much more efficient than linear regulators for large voltage drops
  6. The chip constantly adjusts duty cycle to maintain FB = 1.23V

Common Mistakes to Avoid

Wrong: "The LM2596S-ADJ outputs 15V and we use resistors to drop it to 13.5V"

  • This would waste power like a linear regulator!

Correct: "The LM2596S-ADJ uses PWM switching to create 13.5V directly. The resistors just tell it what voltage to target (by creating 1.23V at FB)."

Wrong: "R1 and R2 pass current from the output"

  • The feedback resistors carry almost no current (less than 1mA)!

Correct: "R1 and R2 form a voltage divider that samples the output voltage and reports it to the FB pin."

See Also