Skip to main content
  • Created:
  • Updated:
  • Author:
    Takeshi Takatsudo

USB Type-C Pinout and Power Delivery

Understanding USB Type-C connector pinout and how it enables USB Power Delivery (PD) negotiation.

Full USB Type-C Pinout (24-pin)

A full USB Type-C receptacle has 24 pins arranged symmetrically to support reversible insertion:

USB Type-C Receptacle (24-pin)
Receptacle Front View (looking into connector)

Top Row (A-side):
┌────────────────────────────────────────────────────┐
│ A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 │
│ GND TX1+ TX1- VBUS CC1 D+ D- SBU1 VBUS RX2- RX2+ GND │
└────────────────────────────────────────────────────┘

Bottom Row (B-side):
┌────────────────────────────────────────────────────┐
│ B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 │
│ GND RX1- RX1+ VBUS SBU2 D- D+ CC2 VBUS TX2- TX2+ GND │
└────────────────────────────────────────────────────┘

Pin Functions

Pin(s)SignalPurposeSpeed
A1, A12, B1, B12GNDGround reference-
A4, A9, B4, B9VBUSPower delivery (5V-20V)-
A5CC1Configuration Channel 1-
B5CC2Configuration Channel 2-
A6, A7, B6, B7D+, D-USB 2.0 data480 Mbps
A2, A3TX1+, TX1-SuperSpeed TX Lane 15-10 Gbps
A10, A11RX2-, RX2+SuperSpeed RX Lane 25-10 Gbps
B2, B3TX2-, TX2+SuperSpeed TX Lane 25-10 Gbps
B10, B11RX1-, RX1+SuperSpeed RX Lane 15-10 Gbps
A8SBU1Sideband Use 1Alternate modes
B8SBU2Sideband Use 2Alternate modes

Simplified USB Type-C for Power-Only (6-pin)

For applications requiring only power delivery (no data transfer), a simplified 6-pin connector is sufficient:

USB Type-C 6-Pin Connector (Power-Only)

┌──────────────────┐
│ 1 2 3 │ Top Row
│ GND VBUS CC1 │
└──────────────────┘
┌──────────────────┐
│ CC2 VBUS GND │ Bottom Row
│ 4 5 6 │
└──────────────────┘

6-Pin Functions

PinSignalPurpose
1, 6GNDGround reference
2, 5VBUSPower delivery (5V-20V)
3CC1Configuration Channel 1 (orientation & PD)
4CC2Configuration Channel 2 (orientation & PD)

This project uses a 6-pin connector (JLCPCB C2927029) - see J1 USB-C Connector documentation.

Configuration Channel (CC) Pins

The CC pins are critical for USB Power Delivery. They serve multiple purposes:

1. Cable Orientation Detection

USB Type-C is reversible. When you plug in a cable:

  • Only one CC pin is active at a time
  • The active CC pin identifies cable orientation
  • The other CC pin remains inactive

Example:

Orientation 1 (normal):
- CC1 active → CH224D detects cable on CC1
- CC2 inactive

Orientation 2 (flipped):
- CC2 active → CH224D detects cable on CC2
- CC1 inactive

2. Current Advertisement (Non-PD)

For standard USB Type-C (without PD negotiation), CC pins advertise available current:

Rp (Pull-up resistor on source)Advertised Current
56kΩDefault USB (500-900mA)
22kΩ1.5A @ 5V
10kΩ3A @ 5V

3. Power Delivery Negotiation

With USB-PD (like CH224D), CC pins carry digital communication:

Negotiation Sequence:

1. Initial Connection (0-100ms):
┌─────────┐ ┌─────────┐
│ Source │ ─── CC line ────→ │ Sink │
│ (PD │ │ (CH224D)│
│ Charger)│ │ │
└─────────┘ └─────────┘
VBUS = 5V (default)

2. Capability Discovery (100-200ms):
┌─────────┐ ┌─────────┐
│ Source │ ←── CC line ──── │ Sink │
│ │ "What voltages │ │
│ │ do you have?" │ │
└─────────┘ └─────────┘

Source responds:
- 5V @ 3A
- 9V @ 3A
- 12V @ 3A
- 15V @ 3A ✅
- 20V @ 2.25A

3. Voltage Request (200-300ms):
┌─────────┐ ┌─────────┐
│ Source │ ←── CC line ──── │ Sink │
│ │ "I want 15V/3A" │ │
│ │ │ │
└─────────┘ └─────────┘

4. Acceptance (300-500ms):
┌─────────┐ ┌─────────┐
│ Source │ ─── CC line ────→ │ Sink │
│ │ "OK, switching" │ │
│ │ │ │
└─────────┘ └─────────┘

5. Voltage Transition (500-1000ms):
VBUS transitions: 5V → 15V

6. Power Ready (>1000ms):
VBUS stable at 15V
System draws up to 45W (15V × 3A)

VBUS Pins and Current Distribution

Why Multiple VBUS Pins?

USB Type-C has 4 VBUS pins (A4, A9, B4, B9) to:

  1. Distribute current: Each pin carries a portion of total current
  2. Reduce resistance: Parallel pins = lower resistance
  3. Improve reliability: Redundancy in case of poor contact

Current distribution example (3A total):

A4 ──┬─→ ~0.75A

A9 ──┤─→ ~0.75A

B4 ──┤─→ ~0.75A Total: 3A

B9 ──┴─→ ~0.75A

6-Pin Connector VBUS

In 6-pin connectors, only 2 VBUS pins are present (pins 2, 5):

  • Maximum current: 3A (sufficient for most USB-PD applications)
  • Current distribution: ~1.5A per pin

This is adequate for our 15V/3A (45W) power supply.

Critical: Always Connect Redundant Pins Together

Why Connect Both VBUS Pins Together?

USB Type-C has redundant power pins by design. For 6-pin connectors, this means:

  • 2 VBUS pins (pins 2, 5)
  • 2 GND pins (pins 1, 6)

You must ALWAYS connect both pins of each type together. Never connect just one!

✅ Correct Connection Strategy

J1 (USB-C 6P Connector)

Pin 1 (GND) ──┬─→ System GND
│ (via wide trace or ground plane)
Pin 6 (GND) ──┘

Pin 2 (VBUS) ──┬─→ VBUS node → CH224D pin 2
│ (via wide trace or copper pour)
Pin 5 (VBUS) ──┘

Pin 3 (CC1) ────→ CH224D pin 10 (separate)
Pin 4 (CC2) ────→ CH224D pin 11 (separate)

❌ Wrong: Connecting Only One Pin

❌ WRONG:
Pin 1 (GND) ──→ System GND
Pin 6 (GND) ──→ Not connected ❌

Pin 2 (VBUS) ──→ VBUS node
Pin 5 (VBUS) ──→ Not connected ❌

Benefits of Connecting Both Pins

BenefitSingle PinBoth Pins Connected
ResistanceRR/2 (half) ✅
Current per pin3A1.5A (distributed) ✅
Power dissipationI²RI²R/4 (quarter) ✅
Voltage dropHighLow
HeatingHighLow
ReliabilitySingle point of failureRedundancy
EMI/NoiseHigherLower

Why This Matters: Practical Example

Scenario: 15V @ 3A power delivery

❌ Using Only One GND Pin:

Resistance: 10mΩ (typical pin + trace resistance)
Current: 3A (full current through one pin)
Voltage drop: V = I × R = 3A × 10mΩ = 30mV
Power dissipation: P = I² × R = 9W × 10mΩ = 90mW (heats up!)

✅ Using Both GND Pins:

Resistance: 5mΩ (two pins in parallel)
Current per pin: 1.5A (distributed)
Voltage drop: V = I × R = 3A × 5mΩ = 15mV (half!)
Power dissipation: P = I² × R = 9W × 5mΩ = 45mW (half the heating!)

Result: Connecting both pins gives you:

  • 50% less voltage drop
  • 50% less heating
  • Better reliability with redundancy

PCB Layout Best Practices

Top Copper Layer:

┌────────────────────────────────┐
│ USB-C Connector J1 │
│ │
│ Pin 1 (GND) ────┐ │
│ ├──→ Via to GND plane
│ Pin 6 (GND) ────┘ │
│ │
│ Pin 2 (VBUS) ───┐ │
│ ├──→ Wide trace to VBUS
│ Pin 5 (VBUS) ───┘ │
└────────────────────────────────┘

Ground Plane (Internal Layer):
████████████████████████████████
█ Solid copper pour █
█ Multiple vias from pins 1, 6 █
████████████████████████████████

Key points:

  1. Use wide traces (≥1mm) or copper pours for VBUS
  2. Use multiple vias to connect GND pins to ground plane
  3. Keep traces short and direct
  4. Use symmetrical routing when possible

USB-C Specification Requirement

The USB Type-C specification requires all redundant power pins to be connected:

  • Ensures proper current distribution
  • Guarantees reliable operation in both orientations
  • Meets thermal and electrical specifications
  • Required for USB-IF certification

Bottom line: Always connect both VBUS pins together AND both GND pins together. This is not optional!

CH224D Connection to USB-C Connector

In this project, the CH224D connects to the 6-pin USB Type-C connector:

J1 (USB-C 6P)          CH224D (QFN-20)

Pin 1 (GND) ──────────→ Pin 0 (GND/EPAD)
Pin 2 (VBUS) ─────────→ Pin 2 (VBUS)
Pin 3 (CC1) ──────────→ Pin 10 (CC1)
Pin 4 (CC2) ──────────→ Pin 11 (CC2)
Pin 5 (VBUS) ─────────→ Pin 2 (VBUS) (paralleled with pin 2)
Pin 6 (GND) ──────────→ Pin 0 (GND/EPAD)

Key points:

  • Both VBUS pins (2, 5) connect to CH224D VBUS (pin 2)
  • Both GND pins (1, 6) connect to CH224D GND (pin 0/EPAD)
  • CC1 and CC2 are separate signals for orientation detection
  • CH224D automatically detects which CC pin is active

Advantages of 6-Pin Power-Only Design

Feature24-Pin Connector6-Pin ConnectorWinner
CostHigher ($0.50-1.00)Lower ($0.20-0.30)✅ 6-pin
PCB SpaceLarger footprintSmaller footprint✅ 6-pin
ComplexityMore routingSimpler routing✅ 6-pin
Data Transfer✅ Yes (USB 2.0/3.x)❌ No24-pin
Power Delivery✅ Yes (up to 5A)✅ Yes (up to 3A)Both
Stock AvailabilityGoodVery good✅ 6-pin

For power-only USB-PD applications, 6-pin connectors are the optimal choice.

Common Misconceptions

❌ "You need all 24 pins for USB-PD"

False. USB-PD only requires VBUS, GND, and CC pins. The 6-pin connector is sufficient for up to 60W (20V/3A).

❌ "CC pins carry power"

False. CC pins carry only low-current signals for communication and detection. Power flows through VBUS pins only.

❌ "Both CC pins are always active"

False. Only one CC pin is active at a time, depending on cable orientation. The CH224D automatically detects which one.

❌ "More VBUS pins = more power"

Partially true. More VBUS pins allow higher current (24-pin supports 5A, 6-pin supports 3A), but voltage is the same. For 45W (15V/3A), the 6-pin connector is sufficient.

References