Skip to main content
  • Created:
  • Updated:
  • Author:
    Takeshi Takatsudo

CJ7912 - -12V Negative Linear Regulator

Fixed negative voltage regulator providing stable -12V output in compact TO-252-2L (DPAK) surface-mount package for negative power rail applications.

SVG Image created as TO-252-3_L6.5-W5.8-P4.58-BL.svg date 2026/01/09 08:17:46 Image generated by PCBNEWTO-252-3_L6.5-W5.8-P4.58-BL
Enlarge
SVG Image created as TO-252-3_L6.5-W5.8-P4.58-BL.svg date 2026/01/09 08:17:46 Image generated by PCBNEWTO-252-3_L6.5-W5.8-P4.58-BL

CJ7912 Package Preview

Overview​

The CJ7912 is a three-terminal negative voltage regulator in TO-252-2L (DPAK) package, designed to provide a fixed -12V output from a more negative input voltage. This component serves as the final stage in the -12V power rail, converting the -13.5V DC-DC output to a clean, low-noise -12V suitable for modular synthesizer op-amp circuits and analog signal processing.

Key Specifications​

ParameterValueNotes
JLCPCB Part NumberC94173
Manufacturer Part NumberCJ7912
PackageTO-252-2L (DPAK)Surface-mount
Stock Availability15,466 unitsModerate availability
Unit Price$0.11JLCPCB pricing
Output Voltage-12V Β±4%-11.52V to -12.48V
Output Current1.5A maxDesign uses 0.8A
Dropout Voltage~2V typicalMaximum VIN = -14V
Line RegulationΒ±0.5% typicalInput voltage variation
Load RegulationΒ±1% typicalOutput current variation
Ripple Rejection>60dB@120Hz
Quiescent Current~5mA typicalNo-load consumption
Thermal Resistance ΞΈJC5Β°C/WJunction to case (tab)
Thermal Resistance ΞΈJA40Β°C/WJunction to ambient
Operating Temp Range0Β°C to +125Β°CJunction temperature

Pin Configuration​

         TO-252-2L (DPAK) Package
Top View

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ β”‚
β”‚ CJ7912 β”‚
β”‚ β”‚
β”‚ β”‚
β”‚ β”‚
β””β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”˜
β”‚ β”‚
PIN1 PIN2
GND INPUT
(Common) (-13.5V)

TAB
(OUTPUT)
(-12V)


Side View

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Component β”‚ ← Surface mount IC
β””β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”˜
β”‚ β”‚
PIN1 PIN2

════════════════════ ← Metal tab (OUTPUT)
soldered to PCB pad

Pin Descriptions​

PinNameFunctionConnection in Design
1GNDGround reference (common)System ground plane
2INPUTUnregulated input voltage-13.5V from DC-DC converter (U4)
TABOUTPUTRegulated -12V output (metal tab)-12V rail with protection circuit

Critical Note: This is a NEGATIVE voltage regulator. Pin numbering and voltage polarities are different from positive regulators:

  • Pin 1 is GND (not INPUT like 78xx series)
  • Pin 2 is INPUT (not GND like 78xx series)
  • More negative voltage is "higher" voltage for this regulator
  • Input must be more negative than output (-13.5V is "higher" than -12V)

Application Circuit​

-13.5V (from DC-DC) ──┬─── C13: 470nF ───┬─── U8: CJ7912 ────┬─── C16: 100nF ───┬─→ -12V OUT
β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚
β”‚ └────│2 INPUT β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”Œβ”€β”€β”‚1 GND β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ TAB ───┴───┴───────────────────
β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚ β”‚ (OUTPUT) β”‚
└─── C21: 470Β΅F ─────┼─────────┬─── C22: 470Β΅F ────────────
(Input) β”‚ β”‚ (Output) β”‚
β”‚ β”‚ β”‚
GND GND β”‚
β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚
β”Œβ”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”
β”‚ LED4 β”‚ Red Status LED
β”‚ (Red) β”‚ via R9: 1kΞ©
β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜
β”‚
GND

Component Values​

Input Capacitors​

ReferenceValueTypeVoltagePackagePart NumberPurpose
C13470nFCeramic X7R25V0603C1623High-frequency noise filtering
C21470Β΅FElectrolytic25VD10xL10.2mmC3351Input voltage stabilization

Important: For C21, negative terminal connects to -13.5V input, positive terminal connects to GND.

Output Capacitors​

ReferenceValueTypeVoltagePackagePart NumberPurpose
C16100nFCeramic X7R50V0805C49678High-frequency decoupling
C22470Β΅FElectrolytic25VD10xL10.2mmC3351Load transient response

Important: For C22, negative terminal connects to -12V output, positive terminal connects to GND.

Status LED Circuit​

ReferencePartValuePackagePart NumberPurpose
LED4Red LED2.0V @ 10mA0805C84256Power status indicator
R9Resistor1kΞ©0603C21190LED current limiting

LED Connection: Anode to GND, Cathode to -12V through R9 (reverse of positive rail LEDs).

Design Considerations​

Negative Voltage Concepts​

Understanding negative voltage regulators:

Voltage Levels (relative to GND = 0V):

GND (0V) ─────────────────
β”‚
β”‚ +13.5V "above" ground
β”‚
+13.5V ─────────────────

GND (0V) ─────────────────
β”‚
β”‚ 12V "below" ground
β”‚
-12V ─────────────────
β”‚
β”‚ 13.5V "below" ground
β”‚
-13.5V ─────────────────

For negative regulator:
- INPUT = -13.5V (more negative)
- OUTPUT = -12V (less negative)
- Dropout = |VIN| - |VOUT| = 13.5V - 12V = 1.5V

Input Voltage Requirements​

The CJ7912 requires input voltage to be at least 2V more negative than the output for proper regulation:

  • Input voltage: -13.5V from LM2596S DC-DC converter
  • Output voltage: -12V
  • Dropout margin: 13.5V - 12V = 1.5V
  • Status: ⚠️ Marginal - operates near minimum dropout voltage

The 1.5V margin is slightly below the typical 2V dropout specification but acceptable because:

  1. The DC-DC stage is regulated at -13.5V
  2. The CJ7912 can regulate with 1.5V dropout at lower currents
  3. Actual load current (0.8A) is well below maximum rating (1.5A)
  4. Negative regulators often have slightly lower dropout than positive equivalents

Recommendation: For production, consider increasing DC-DC output to -14.0V for better dropout margin.

Thermal Management​

Power dissipation calculation:

P = (|VIN| - |VOUT|) Γ— IOUT
P = (13.5V - 12V) Γ— 0.8A
P = 1.5V Γ— 0.8A
P = 1.2W

Temperature rise without additional heatsinking:

Ξ”T = P Γ— ΞΈJA
Ξ”T = 1.2W Γ— 40Β°C/W
Ξ”T = 48Β°C

At 25Β°C ambient, junction temperature = 73Β°C (well within 125Β°C maximum).

Thermal performance of TO-252-2L:

  • Moderate ΞΈJA (40Β°C/W)
  • Metal tab provides good heat spreading
  • Direct thermal contact with PCB copper pour
  • No additional heatsink required for this application

PCB copper area recommendations:

  • Minimum: 3 cmΒ² copper pour connected to tab
  • Recommended: 6 cmΒ² copper pour for better margin
  • Thermal vias: 6-8 vias (0.3mm) under tab to bottom layer

Capacitor Placement and Polarity​

Critical for negative regulators: Electrolytic capacitor polarity is REVERSED from what you might expect:

Correct polarity for negative rail:

C21 (Input, 470Β΅F):
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
GND ────+ -β”œβ”€β”€β”€ -13.5V
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

C22 (Output, 470Β΅F):
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
GND ────+ -β”œβ”€β”€β”€ -12V
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

REMEMBER:
- Positive terminal goes to GROUND (0V)
- Negative terminal goes to negative voltage
- This is OPPOSITE of positive voltage regulators

Placement guidelines:

  1. C13 (470nF ceramic): Place within 5mm of pin 2

    • Purpose: Suppress high-frequency noise from DC-DC stage
    • Non-polarized, so no polarity concerns
  2. C21 (470Β΅F electrolytic): Place within 10mm of pin 2

    • Purpose: Stabilize input voltage during load transients
    • POLARITY: + to GND, - to -13.5V
  3. C16 (100nF ceramic): Place within 5mm of output tab

    • Purpose: High-frequency output decoupling
    • Critical for preventing oscillation
  4. C22 (470Β΅F electrolytic): Place within 10mm of output tab

    • Purpose: Improve load transient response
    • POLARITY: + to GND, - to -12V

Ground Plane Connection​

The TO-252-2L package layout:

  • Pin 1 (GND): Wide connection directly to ground plane
  • Pin 2 (INPUT): Connect to -13.5V rail
  • Tab (OUTPUT): Large copper pour for -12V distribution and thermal management
  • Thermal vias: Essential for heat dissipation to inner/bottom layers

Performance Characteristics​

Regulation Performance​

ConditionSpecificationTypical Performance
Line regulationVIN = -14.5V to -27VΒ±0.5% (Β±60mV)
Load regulationIOUT = 5mA to 1.5AΒ±1% (Β±120mV)
Output voltage accuracyAt 25Β°CΒ±4% (Β±480mV)
Temperature coefficient-40Β°C to +125Β°CΒ±1mV/Β°C typical

Noise Performance​

ParameterValueConditions
Ripple rejection60dB minf = 120Hz
Output noise voltage<1mVp-pWith recommended capacitors
Transient response<50Β΅s400mA load step

Protection Features​

Built-in Protections​

  1. Thermal Shutdown: Automatically shuts down if junction temperature exceeds 150Β°C
  2. Short Circuit Protection: Current limiting prevents damage during output short
  3. Safe Operating Area (SOA): Internal circuitry ensures operation within safe limits

External Protection (This Design)​

-12V (from U8) ──┬─── PTC3: 1.1A ──┬─── F3: 1.5A ──┬─── TVS3: SMAJ15A ───┬─→ -12V OUT
β”‚ (Auto-Reset) β”‚ (Backup) β”‚ (15V Clamp Rev) β”‚
β”‚ β”‚ β”‚ ↑ β”‚
β”‚ β”‚ └─────GND──────────────
β”‚ β”‚ β”‚
└─── LED4 (Red) via R9 (1kΞ©) ──────────────→ Power Status
(Cathode to -12V, Anode to GND through resistor)

TVS Diode Connection for Negative Rail:

         TVS3 (SMAJ15A)
β”Œβ”€β”€β”€β”€β”€β”
-12V ──────── β”‚ β”œβ”€β”€β”€β”€β”€β”€ GND
β””β”€β”€β–²β”€β”€β”˜
β”‚
(Cathode to -12V
Anode to GND)

Protection stages:

  1. Overload (0.9A-1.5A): PTC3 trips β†’ Auto-reset after cooling
  2. Short circuit (>1.5A): F3 blows β†’ Manual replacement required
  3. Overvoltage: TVS3 clamps transients (reverse-biased for negative voltage)

Note: For the negative rail, the TVS diode is connected with cathode to -12V and anode to GND, which is reverse of positive rail configuration.

Bill of Materials​

DesignatorPartValuePackageJLCPCB Part #QtyUnit PriceExtended
U8CJ7912Fixed -12V LDOTO-252-2LC941731$0.11$0.11
C13Ceramic Cap470nF 25V X7R0603C16231$0.0036$0.0036
C16Ceramic Cap100nF 50V X7R0805C496781$0.0021$0.0021
C21, C22Electrolytic470Β΅F 25VD10xL10.2mmC33512$0.044$0.088
LED4LEDRed 08050805C842561$0.0126$0.0126
R9Resistor1kΞ© Β±1%0603C211901$0.0005$0.0005
Total$0.22

Note: Higher total cost than positive regulators due to larger electrolytic capacitors (25V rating vs 10V).

Alternative Parts​

Direct Replacements (TO-252-2L Package)​

Part NumberManufacturerJLCPCB Part #StockPriceNotes
CJ7912Jiangsu Changjing ElectronicsC9417315,466$0.11Recommended (moderate stock)
LM7912DTSTMicroelectronicsCheckCheck~$0.15Higher quality, better specs
MC7912DTGON SemiconductorCheckCheck~$0.14Pin-compatible

Package Alternatives​

PackagePart NumberJLCPCB Part #StockPriceNotes
TO-252-2LCJ7912C9417315,466$0.11Recommended (SMD)
TO-220L7912CVC1921013,386$0.11Through-hole alternative
SOT-89LM7912-SOT89CheckLower~$0.18Lower current rating

Stock Note: If C94173 (CJ7912) is out of stock, consider C192101 (L7912CV TO-220) which has similar availability.

PCB Layout Guidelines​

Footprint Requirements​

TO-252-2L (DPAK) package footprint specifications:

         Top View (PCB Pad Layout)

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ β”‚
β”‚ Large Copper Pour β”‚ ← OUTPUT TAB (-12V)
β”‚ (6cmΒ² recommended) β”‚ thermal + electrical
β”‚ β”‚
β”‚ Thermal Vias β”‚
β”‚ (6-8 vias) β”‚
β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

PIN1 β–  PIN2 β– 
(GND) (INPUT)
(-13.5V)

Pin spacing: 2.28mm
Pin pad: 1.5mm x 2.0mm
Tab pad: 10mm x 10mm (minimum)
12mm x 12mm (recommended)
PadWidthLengthPurpose
Pin 1 (GND)2.0mm3.0mmLarger for ground connection
Pin 2 (INPUT)1.5mm2.0mmSolder pad for input pin
Tab (OUTPUT)10-12mm10-12mmThermal and electrical connection

Layout Recommendations​

  1. Component placement:

    • Orient IC with tab facing interior of PCB
    • Maximize copper area under and around tab for -12V rail
    • Keep input and output capacitors on same side as regulator
    • Separate -12V copper pour from +12V pour (clearance >2mm)
  2. Copper pours:

    • Create dedicated copper pour for -12V rail (6cmΒ² minimum)
    • Top layer: Main output pad and distribution to -12V loads
    • Bottom layer: Additional copper connected via thermal vias
    • Keep -12V copper separate from positive voltage pours
  3. Thermal vias:

    • Place 6-8 thermal vias (0.3mm diameter) under tab
    • Arrange in grid pattern for even heat distribution
    • Connect to bottom layer copper pour for -12V
    • Direct connection (no thermal relief) for best heat transfer
  4. Trace widths:

    • Input trace (-13.5V): 0.8mm minimum (0.8A current)
    • Output trace (-12V): 1mm minimum (0.8A current)
    • Ground: Maximum copper pour area
    • High-current paths: 2mm or copper pour preferred
  5. Electrolytic capacitor polarity markings:

    • Add clear silkscreen markings: "+" toward GND
    • Add polarity indicators to prevent assembly errors
    • Consider adding text: "NEG RAIL - CHECK POLARITY"

Critical Layout Warnings​

⚠️  ELECTROLYTIC CAPACITOR POLARITY WARNING ⚠️

For negative voltage regulator:
Positive terminal (+) β†’ GND (0V)
Negative terminal (-) β†’ Negative voltage

This is OPPOSITE of positive regulators!

Add clear silkscreen markings to prevent
assembly errors that will destroy capacitors.

Thermal Via Pattern​

    Recommended thermal via pattern
under TO-252-2L tab:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ β”‚
β”‚ ● ● ● ● ● β”‚
β”‚ β”‚ ← 0.3mm vias
β”‚ ● ● ● ● ● β”‚ 2.5mm spacing
β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Total vias: 10 (aggressive cooling)
Minimum: 6 vias
Recommended: 8 vias

Assembly Considerations​

Critical Assembly Warnings​

ELECTROLYTIC CAPACITOR POLARITY:

The most common assembly error with negative voltage regulators is installing electrolytic capacitors backwards. This will cause:

  • Immediate capacitor failure
  • Possible explosion of electrolytic capacitors
  • Regulator damage
  • Board contamination

Prevention:

  1. Add clear silkscreen markings on PCB
  2. Include assembly notes in BOM
  3. Test capacitor polarity with DMM before powering
  4. Use polarized ceramic capacitors if available (more expensive)

Soldering Guidelines​

Reflow soldering (recommended for production):

  • Peak temperature: 260Β°C maximum
  • Time above 220Β°C: 60-90 seconds
  • Solder paste: SAC305 or similar lead-free
  • Stencil thickness: 0.125mm (5 mil)

Hand soldering:

  • Soldering iron: 350Β°C maximum
  • Solder pin 1 (GND) first for reference
  • Solder pin 2 (INPUT) second
  • Apply solder to tab from component side
  • Ensure good thermal contact between tab and PCB pad

Inspection Points​

After assembly, inspect:

  1. Electrolytic capacitor polarity: CRITICAL - verify + to GND
  2. Pin solder joints: Smooth fillet, no bridges
  3. Tab solder joint: Good coverage, no voids
  4. Component alignment: Centered on pads
  5. Thermal via filling: Solder should wick into vias

Pre-power checklist:

  • C21 polarity: + terminal to GND, - terminal to -13.5V
  • C22 polarity: + terminal to GND, - terminal to -12V
  • Visual inspection complete
  • Continuity test: GND to pin 1
  • Resistance test: No shorts between -12V and GND
  • Resistance test: No shorts between -13.5V and GND

Testing and Validation​

Pre-Power Inspection​

Before applying power, verify:

  1. Capacitor polarity check:

    • C21: Measure with DMM in diode mode
    • C22: Measure with DMM in diode mode
    • Positive terminal should be at GND potential
    • Negative terminal should be connected to negative voltage rail
  2. Visual inspection:

    • No solder bridges
    • Good solder joints on tab
    • Correct IC orientation
    • All components present

Initial Power-Up Test​

  1. Apply input voltage slowly:

    • Start with -10V input (below regulation threshold)
    • Gradually increase to -13.5V
    • Monitor for smoke or unusual smells
    • Check for thermal runaway
  2. No-load test:

    • Apply -13.5V to input
    • Verify output voltage: -11.52V to -12.48V (-12V Β±4%)
    • Measure quiescent current: <10mA
    • Check case temperature: Should be near ambient

Load Regulation Test​

  1. Connect variable load (0-1.0A)
  2. Measure output voltage at different load currents:
    • 0mA: Should be within -12V Β±2%
    • 400mA: Should be within -12V Β±3%
    • 800mA: Should be within -12V Β±4%
  3. Verify voltage variation <120mV from no-load to full-load

Thermal Test​

  1. Apply 0.8A load for 30 minutes
  2. Measure case temperature with thermal camera
  3. Verify case temperature <75Β°C at 25Β°C ambient
  4. Compare to calculation: Should be ~73Β°C
  5. Check for thermal shutdown (should not occur)

Ripple and Noise Test​

  1. Connect oscilloscope (AC coupling, 20MHz bandwidth limit)
  2. Use short ground lead or coax probe
  3. Measure output relative to GND with 0.8A load
  4. Verify peak-to-peak ripple <5mVp-p (target: <1mVp-p)
  5. Check for oscillation or instability

Transient Response Test​

  1. Use electronic load with step function (0A β†’ 0.8A)
  2. Monitor output voltage on oscilloscope
  3. Verify voltage dip <200mV during load step
  4. Verify recovery time <100Β΅s
  5. Check for ringing or overshoot

Troubleshooting​

SymptomPossible CauseSolution
No output voltageInput voltage not negative enoughVerify -13.5V input from DC-DC
Shorted outputCheck for shorts on -12V rail
Electrolytic cap installed backwardsCHECK POLARITY - replace if backwards
Thermal shutdownReduce load, check thermal vias
Smoke/burning smellElectrolytic cap reversedPOWER OFF IMMEDIATELY - replace cap
Output shorted to groundRemove short, check board
Low output magnitudeInsufficient input voltageCheck DC-DC output (should be -13.5V)
(e.g., -10V instead of -12V)Excessive load currentVerify load <0.8A
Poor ground connectionCheck pin 1 connection
High ripple noiseMissing input capacitorVerify C13, C21 installed
Missing output capacitorVerify C16, C22 installed
Wrong capacitor polarityCheck electrolytic polarity
OscillationMissing C16 (100nF output)Add C16 close to output tab
Long output tracesShorten traces, add local decoupling
Capacitive loadAdd series resistance (1Ξ©) at output
OverheatingExcessive power dissipationCheck input voltage (should be -13.5V)
Insufficient copper areaIncrease copper pour under tab
No thermal viasAdd thermal vias under tab
Poor thermal contactCheck solder joint on tab
Wrong polarity outputWrong regulator installedVerify CJ7912 not CJ7812
(+12V instead of -12V)Wiring errorCheck schematic vs. layout
Voltage too negativeInput voltage too negativeCheck DC-DC stage (-13.5V target)
(e.g., -13V instead of -12V)Wrong feedback resistors on DC-DCCheck U4 feedback network

Application Notes​

Op-Amp Power Supply Considerations​

The -12V rail typically powers operational amplifiers in modular synthesizers:

Typical op-amp requirements:

  • Dual supply: Β±12V (some designs use Β±15V)
  • Current per op-amp: 2-10mA quiescent
  • Peak current: Up to 30mA during output swings
  • Noise sensitivity: Very high (audio applications)

Distribution recommendations:

  1. Star ground topology:

    • Connect all op-amp ground pins to single point
    • Prevents ground loops and noise coupling
    • Keep analog ground separate from digital ground
  2. Local decoupling:

    • Add 100nF ceramic capacitor at each op-amp power pin
    • Place capacitor within 5mm of IC
    • Both +12V and -12V pins need decoupling
  3. Bulk capacitance:

    • Add 10Β΅F electrolytic per 4-8 op-amps
    • Place in central location
    • Remember polarity: + to GND, - to -12V

Audio Noise Considerations​

For ultra-low-noise audio applications:

  1. Additional filtering:

    • Add RC filter: 10Ξ© + 47Β΅F per audio section
    • Creates pole at ~340Hz
    • Reduces regulator noise in audio band
  2. Separate analog/digital -12V:

    • Use separate regulators if possible
    • If sharing regulator, use isolation filters
    • Prevents digital switching noise coupling to audio circuits
  3. PCB layout:

    • Keep -12V traces away from high-frequency signals
    • Use ground plane as shield
    • Route audio signals perpendicular to power traces

Dual Supply Voltage Matching​

When using Β±12V supplies for op-amps, voltage matching is important:

ParameterSpecificationImpact
Voltage matchWithin Β±0.5VPrevents DC offset in op-amp outputs
Noise matchWithin 2:1 ratioBalanced noise rejection
Regulation matchWithin Β±1%Consistent performance across temperature

Verification:

  • Measure both +12V and -12V outputs simultaneously
  • Calculate: |V+12| - |V-12| should be <0.5V
  • Adjust DC-DC stage if needed (modify feedback resistors)
  • Upstream: LM2596S-ADJ (U4) - Provides -13.5V input via inverting buck-boost topology
  • Downstream: Protection circuit (PTC3, F3, TVS3)
  • Parallel regulators: L7812CD2T-TR (U6), L7805ABD2T-TR (U7)

Common Mistakes and How to Avoid Them​

Mistake 1: Reversed Electrolytic Capacitors​

Problem: Installing C21 or C22 with reversed polarity Consequence: Capacitor explosion, regulator damage Prevention:

  • Add large silkscreen warnings on PCB
  • Test polarity with DMM before powering up
  • Use checklist during assembly

Mistake 2: Confusing Positive and Negative Regulator Pinouts​

Problem: Assuming pin 1 is INPUT (like 78xx series) Consequence: Wrong connections, no output Prevention:

  • Clearly label pins on schematic: "Pin 1 = GND" not "Pin 1"
  • Add reference designator table to schematic
  • Use different symbol for negative regulators

Mistake 3: Insufficient Dropout Voltage​

Problem: Input voltage not negative enough (-12V input for -12V output) Consequence: No regulation, output follows input Prevention:

  • Calculate dropout: |VIN| must be >|VOUT| + 2V
  • Design DC-DC stage for -13.5V or -14V
  • Monitor DC-DC output voltage during testing

Mistake 4: Wrong TVS Diode Polarity​

Problem: Installing TVS3 with cathode to GND (like positive rail) Consequence: No overvoltage protection, possible short circuit Prevention:

  • Clearly mark TVS polarity on schematic
  • For negative rail: Cathode to negative voltage, Anode to GND
  • Test TVS connection with DMM (should show high resistance GND to -12V)

Mistake 5: Shared Copper Pour with Positive Rails​

Problem: Connecting -12V copper to +12V copper Consequence: Direct short circuit, catastrophic failure Prevention:

  • Use separate copper pours for each voltage rail
  • Maintain >2mm clearance between different voltage pours
  • Use DRC (Design Rule Check) to verify clearances

References​